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Abstract

This paper determines the rate of convergence of a class of block Jacobi iterative schemes when
the schemes are applied to a general class of problems. Among these iterative schemes are the q-line
and q-plane block Jacobi schemes. while the general class of problems include discretizations of
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SIGNIFICANCE AND EXPLANATION

'The solution of many elliptic and parabolic partial differential equations lead to the need to
solve large linear systems. With the usuaJ serial computer architecture point iterative schemes
frequently led to the efficient solution of many of these systems. In a point iterative scheme the
current estimate of the solution is improved in a repetitive fashion by modifying only oae component
of the solution. The advent of vector and parallel computer architectures now allow the efficient
solution of these systems by using block iterative schemes. In a block iterative scheme the current
estimate of the solution is improved in a repetitive fashion by modifying several components of the
solution. Since point iterative schemes can be viewed as particularly simple block iterative schemes
one would expect to find that block iterative schemes can potentially converge faster than point
iterative schemes. In this paper the rate of convergence of one class of block iterative schemes is
precisely determined.

The responsibility for the wording and views expressed in this descriptive summary lies with
MRC, and not with the author of this report.



THE RATE OF CONVERGENCE OF A CLASS OF BLOCK JACOBI SCHEMES

Warren E. Ferguson. Jr.*

1. Introduction

This paper determines the spectrum of a class of block Jacobi iterative schemes when these
schemes are used to solve linear systems of the form

Az b with A = trid(- I.T,-1)

a square matrix of block order n. In this analysis it will be assumed that I denotes the identity
matrix of order m and that T is a symmetric positive definite matrix of order m whose eigenvalues
are all greater than two. Such problems arise quite naturally when elliptic and parabolic parital
differential equations. whose coefficients do not depend on one of the spatial variables, are dis-
cretized. Of course. knowing the spectrum of an iterative scheme allows one to precisely describe
its rate of convergence 5 .

Among the block Jacobi iterative schemes considered are the q-line block Jacobi schemes and
their higher dimensional variants. These schemes have been described and analyzed extensively
by others 1,2,3A.. As an application of this analysis the spectral radius of the q-line block Jacobi
scheme is determined when it is applied to the two-dimensional Dirichlet version of Laplace's
equation in the unit square.

To every block Jacobi scheme there is a naturally related block SOR schemei5. Since the
block Jacobi matrices considered here are consistently ordered 2-cyclic matrices then the results
of %'arga can be used to determine the optimal relaxation parameter for the block SOR scheme.

In this paper block matrices will be used extensively. These block matrices all have the
property that the blocks on the diagonal are themselves square matrices. Furthermore the notation
diag() and trid() will be used to denote diagonal and tridiagonal matrices respectively

2. The Block Jacobi Scheme

The block Jacobi scheme to be considered is but one member of a general class of iterative
schemes which are frequently used to solve the linear system

Ax - ( (2 1a)

This general class of iterative schemes has the form

Bx CT b for L, ! .2.3. '2 It,
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where x(') is an initial approximation to x while B and C describe a splitting of A[5,; i.e. B is
nonsingular and

A = B- C. (2.1 c)

It is well-known that the rate of convergence of the iterative scheme (2. lb) is described by the root
A =p of

!\B - C = 0 (2. 1d)

having largest magnitude5.. In equation (2.1d) the function . represents the determinant function
Clearly (2.1d) is a generalized eigenvalue problem.

In this analysis it will be assumed that

A = trid(- I. T. -1) (2.2a)

is a square matrix of block order n where the identity matrix I and T are square matrices of order
m. The matrix T is also assumed to be a symmetric positive definite matrix whose eigenva)ues are
all greater than two. Since T is a symmetric matrix then there is an orthogonal matrix P which

diagonalizes T; i.e.

P'TP = diag(t 1, t 2., t,,) (2.2b)

where P' denotes the transpose of P. Without loss of generality it will be supposed that the
eigenvalues tI ,t 2 .... ,t,, of T are ordered so that

2 < t I<! t 2 S ..- t,. (2.2c)

Consider the case n = pq where p > 2 and q ? I are integers. The block Jacobi scheme to be

considered is of the form (2.1b) with

B =trid(O, M, O) and C trd(d .0. N'). (2.3a)

both square matrices of block order p where

.. 0

M = trid(-1,T,-I) and N . (2.3b)

l0 ... 0 0.

are themselves square matrices of block order q. Since B is a symmetric positive definite matrix
it follows that the roots of (2.3d) are real. It will be assumed that q 2 since the roots of (2.1d)
when q = I have already been determined by Arms. Gates and Zondek l.

3. Simplification of the Generalized Eigenvalue Problem

One of the basic tools used to determine the roots of (2.1d) is the following explicit represen-
tation

M S-(T)S 1,(T)S,_j(T), when i < j;
= (T)S)_(T)Sq,(T). when i> (

-2-



of M-1 (M,- 1) due to Bank 6'. Here S,(iT) denotes the 1th degree Chebyshev polynomial of the

first kind scaled for the interval 0, 2,. Since the eigenvalues of T are greater than two then

S,(Z) = sinh (il + 10) with cosh (0) - X (3.1b)

sinh (4,)

is an appropriate representation of these polynomials. Based on this representation of M it
follows that (2.1d) can be reduced to the equation

A] - D =0 (3.1c)

where

D =- B-C = Trid(M'-N.0,M-N').

M -N =i0,...0. M - . ,and (3.1d)
M -'N, ; M-' ..-

Here M.-. and M denote respectively the first and last block columns of M -A.

The further simplification of equation (2.4c) is best explained by considering the special case
p = 3. In this case AI - D has the following nonzero structure

(1) (2) (3) (3) (2) (3) (3) (2) (1)

Al -F
A)

Al -G

-G Al -F

Al (3.2a)

-F AI -G

-G Al

AI

-F Al

where

F =S 9(T) and G = S '(T)Sq_,(T) (3.26)

By expanding the determinant of the matrix described by (3.2a) columnwise along the block
columns labeled (1) and (2), then interchanging the adjacent block columns labeled by (3), it
follows in the general cae that (3.1c) simplifies to

Ai- 2 (P- 1)l1 IEp = 0 (3.2c)

-3-



where (10 0 I -G [0:1)
is a square matrix of block order p - 1. The analysis now continues by determining the roots of

:E = 0. (3.2e)

Since P diagonalizes T it also diagonalizes both F and G. Indeed

P'FP= diag(f',f 2'2.. ,f,), and P'GP =diag(gl,g 2.... ,g, ) (3.3a)

where

and gt - '(t)Sql(ti) for 1=1,2,... ,m. (3.3b)

Next define

Q E diag(PP,..., P) (3.3c)

as a square matrix of block order 2(p - 1) and note that the graph of Q'EQ consists of exactly
m connected components. each component connecting columns of Q'EQ whose, indices modulo m
are the same. From this fact it follows that

JE = JE, IE2! ... jE, (3.3d)

where

0 -f i g, A ) for I m=1,2. . (3.3e)E l = trid 0 0 0 A - g O - i '

is a square matrix of block order p - I for I = 1, 2..... m. Therefore the roots of (3.2e) can be
described as the union of the roots of

JEI = 0 for I = 1,2...., m (3.3 )

Since each of the equations in (3.3f) has the same general form it would seem wise to characterize
the roots of the generic equation

!Hk! = 0 (3.3g)

where

H= trid [0 - g gA ] 0(3.3h)

is a square matrix of block order k with

0 < " < g. (3.3)

The assumption (3.3i) is justified in view of equations (2.2c), (3.1b) and (3.3b).
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4. Solution of the Generic Equation

The first step in the determination of the roots of the generic equation (3 .3 g) is to realize
that the matrix described by (3.3h) is in actuality a tridiagonal matrix. If H, denotes the matrix
obtained by deleting the last row and column from H, it follows that the determinants of Hk and
/k satisfy the recurrence relations

Hk = -A 2 Hk-.I -g9'h , and

iik =f- P Ik- -g 9 1 k- I

Consequently it is easily shown that
',Hk; A f
Ifk [g -_ f 2 0> (4. 1b)

Since IBk! depends on A2 it follows that the roots of (3.3g) occur, as expected, in positive/negative
pairs.

The next step in the determination of the roots of the generic equation (3.3g) consists of the
localization of its roots. Recall that one implication of Gerschgorin's theorem is that irreducibly
diagonally dominant matrices are never singular[5L. By applying this result to the matrix H, in
(3.3h) and its column permuted form

trid(' -f -9 [ 01 (4.2a)td([-J 0] 0 1 -g 0-

it, follows that the roots of (3.3g) lie either in the open subinterval (g - f,g - f) of the positive
real line or its negative image (-g - f, -g + f). I

Assume that A lies in the open subinterval (g - f,g + f) of the positive real line. For these
values of A the two eigenvalues 1AI and P2 of the matrix

S2 -g\2 g,] (4.3a)

are distinct and admit the representation

'U I =Afe', and PU2 = Afe-' (4.3b)

where 0 is that angle in the open inverval (0,7r) defined by the equation

Cos(0) - g2 - A 2 
- f 2

Note that 0 increases from 0 to 7r as A increases from 9 - f to g + f. The matrix

Af + P:1 2 1*t:1P (4.3d)

-5- _



diagonalizes the matrix in (4 3a) and so a short calculation shows that

'HkI~ - 2 -(14 ,~ f 2 )pl2
IHk,] + P f')4 - (P2 - (4.3e)Al P2 - g, 2)

From the representation

S1(2cos (0)) : sin_( I - 1 0) for 0 < 8 9 7r (4.3 )
sin (0)

of the Chebyshev polynomials of the first kind (4.3e) can also be written as

(IHkk2 A2 - f2 Sk-I A

HC! k =(if)k-,IA (92_ - 2 - f2 A (4.3g)
-9Sk-, ( f

It follows that (4.3g) holds for all A since both sides are polynomials in A which agree in value for
all A in the nonempty open interval (g - fg - f).

It is now a simple matter to describe the roots of the generic equation (3.3g). The roots of
(3.3g) occur in positive/negative pairs with the positive roots admitting the representation

A - cos (0) - 0 2 - f2 sin 2 (0) (4.4a)

where 9 is any one of the k distinct roots of

tan (Ik - 1 0): sin (0) -- (4.4b)

g2 -- f2 sin 2 (0)

in the open interval (O. ir). As illustrated by Figure 1 when k = 3 and g = lIf. there is exactly
one root of (4.4b) in each of the disjoint intervals

j,= ( k I i,. n7r for i= 1 .2.. k. (4.4c)(k -t 1) '(k t !

Noie that as k - oc the intervals J1 , J2 . . . . . Jk densely fill the interval (0, 7r) with the points in
Jk uniformly approaching n. Consequently the sharpest upper bound for the largest root of (3.3g)
that is valid for all k is

A -- g f (4.4d)

Note that this i.- the same upper bound on the roots of (3. 3 g) described b) Gerschgorin's theorem.

5 The Spectrum of the Block Jacobi Scheme

Using the resuh% of the previous section the specturm of the block Jacobi scheme can be
described & follo h shown by (3.2c). exactly n - 2(p l)'m roots of (2.1d) are zero. Of the
remaining 2 (p I )",, niizero roots of (2.1d) half of the roots are positive and the other half are the
negative ,mages of ,th positive roots The (p - I)m positive roots can be divided into m clusters

-6-
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each containing p - I roots. The Ith such cluster consists of the roots of (2.1d) lying in the open
interval (g, - ,f,91 + fi) and can be obtained frcm (4.4a) by solving (4.4b) with k = p - 1, f = fi
and g = g9 for the p - I roots 0 lying in (0, 7r).

The clusters described above are also the same clusters predicted and observed by Kratzer.
Parter, and Steuerwalt4'. Note that the radius f, of the Ith cluster decreases rapidly as q increases.

Since f, and g, are decreasing functions of I it follows that the root p of (2.1d) having largest
magnitude belongs to the cluster of roots lying in (gi - f!I. g, - fl). It can be obtained from (4.4a)
by solving (4.4b) with k - p- 1 f = fI and g = gi for the largest root 0 lying in (0, X). Of course,
knowledge of p allows one to determine the optimal relaxation parameter "; for the block SOR
methods naturally related to this block Jacobi scheme,5 . Since the iteration matrix for this block
Jacobi scheme is a consistently ordered 2-cyclic block matrix it follows that

2 (5.a)
I -'-

is the optimal relaxation parameter.

As stated in the previous section, the sharpest upper bound on p which is valid for all p is the
bound

P - f, - g). (5.2a)

When

T = trid(-1, 4, -1) (5,2b)

is a square matrix of order m then it is well-known that

t = 2 4 sin 2 (1rh) where h = (5.2c)
2M I

After a straightforward Taylor series expansion it follows that

p I -I q(;ri)2. (5.2c)

a well-known result of Parterj2 .
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